Authors: Ryan Hill and Logan McLeodThis work presents a method for simulating the heating of machine gun barrels during burst firings. The method utilizes a two-dimensional axisymmetric finite element model which solves the highly transient convection input on the bore wall, conduction through the barrel, and convective and radiative cooling on the outside wall. The transient input is derived from a coupling of a lumped-parameter interior ballistics code with a one-dimensional compressible flow model which includes the discharge of the combustion product gas behind the projectile. This transient convective boundary condition can be repeated as desired for arbitrary firing schedules. Finally, an example simulation is performed on a small caliber machine gun and compared with experimental data.